GNN-RL Compression: Topology-Aware Network Pruning using Multi-stage Graph Embedding and Reinforcement Learning

02/05/2021
by   Sixing Yu, et al.
0

Model compression is an essential technique for deploying deep neural networks (DNNs) on power and memory-constrained resources. However, existing model-compression methods often rely on human expertise and focus on parameters' local importance, ignoring the rich topology information within DNNs. In this paper, we propose a novel multi-stage graph embedding technique based on graph neural networks (GNNs) to identify the DNNs' topology and use reinforcement learning (RL) to find a suitable compression policy. We performed resource-constrained (i.e., FLOPs) channel pruning and compared our approach with state-of-the-art compression methods using over-parameterized DNNs (e.g., ResNet and VGG-16) and mobile-friendly DNNs (e.g., MobileNet and ShuffleNet). We evaluated our method on various models from typical to mobile-friendly networks, such as ResNet family, VGG-16, MobileNet-v1/v2, and ShuffleNet. The results demonstrate that our method can prune dense networks (e.g., VGG-16) by up to 80 state-of-the-art methods and achieved a higher accuracy by up to 1.84 ShuffleNet-v1. Furthermore, following our approach, the pruned VGG-16 achieved a noticeable 1.38× speed up and 141 MB GPU memory reduction.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro