Gibbsian T-tessellation model for agricultural landscape characterization

A new class of planar tessellations, named T-tessellations, was introduced in ([10]). A model was proposed to be considered as a completely random T-tessellation model (CRTT) and its Gibbsian variants were discussed. A general simulation algorithm of Metropolis-Hastings-Green type was derived for model simulation, involving three local transformations of T-tessellations. The current paper focuses on statistical inference for Gibbs models of T-tessellations. Statistical methods originated from point pattern analysis are implemented on the example of three agricultural landscapes approximated by T-tessellations. The choice of model statistics is guided by their capacity to highlight the differences between the landscape patterns. Model parameters are estimated by Monte Carlo Maximum Likelihood method, yielding a baseline for landscapes comparison. In the last part of the paper a global envelope test based on the empty-space function is proposed for assessing the goodness-of-fit of the model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro