Gibbs-Ringing Artifact Removal Based on Local Subvoxel-shifts

01/30/2015
by   Elias Kellner, et al.
0

Gibbs-ringing is a well known artifact which manifests itself as spurious oscillations in the vicinity of sharp image transients, e.g. at tissue boundaries. The origin can be seen in the truncation of k-space during MRI data-acquisition. Consequently, correction techniques like Gegenbauer reconstruction or extrapolation methods aim at recovering these missing data. Here, we present a simple and robust method which exploits a different view on the Gibbs-phenomena. The truncation in k-space can be interpreted as a convolution with a sinc-function in image space. Hence, the severity of the artifacts depends on how the sinc-function is sampled. We propose to re-interpolate the image based on local, subvoxel shifts to sample the ringing pattern at the zero-crossings of the oscillating sinc-function. With this, the artifact can effectively and robustly be removed with a minimal amount of smoothing.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro