Generalized Principal Component Analysis

07/03/2019
by   F. William Townes, et al.
5

Generalized principal component analysis (GLM-PCA) facilitates dimension reduction of non-normally distributed data. We provide a detailed derivation of GLM-PCA with a focus on optimization. We also demonstrate how to incorporate covariates, and suggest post-processing transformations to improve interpretability of latent factors.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro