Generalized Invariant Matching Property via LASSO

01/14/2023
by   Kang Du, et al.
0

Learning under distribution shifts is a challenging task. One principled approach is to exploit the invariance principle via the structural causal models. However, the invariance principle is violated when the response is intervened, making it a difficult setting. In a recent work, the invariant matching property has been developed to shed light on this scenario and shows promising performance. In this work, we generalize the invariant matching property by formulating a high-dimensional problem with intrinsic sparsity. We propose a more robust and computation-efficient algorithm by leveraging a variant of Lasso, improving upon the existing algorithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro