Generalizable Multi-Camera 3D Pedestrian Detection

04/12/2021
by   Joao Paulo Lima, et al.
14

We present a multi-camera 3D pedestrian detection method that does not need to train using data from the target scene. We estimate pedestrian location on the ground plane using a novel heuristic based on human body poses and person's bounding boxes from an off-the-shelf monocular detector. We then project these locations onto the world ground plane and fuse them with a new formulation of a clique cover problem. We also propose an optional step for exploiting pedestrian appearance during fusion by using a domain-generalizable person re-identification model. We evaluated the proposed approach on the challenging WILDTRACK dataset. It obtained a MODA of 0.569 and an F-score of 0.78, superior to state-of-the-art generalizable detection techniques.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro