Generalised Bayesian Structural Equation Modelling

We propose a generalised framework for Bayesian Structural Equation Modelling (SEM) that can be applied to a variety of data types. The introduced framework focuses on the approximate zero approach, according to which a hypothesised structure is formulated with approximate rather than exact zero. It extends previously suggested models by MA12 and can handle continuous, binary, and ordinal data. Moreover, we propose a novel model assessment paradigm aiming to address shortcomings of posterior predictive p-values, which provide the default metric of fit for Bayesian SEM. The introduced model assessment procedure monitors the out-of-sample predictive performance of the model in question, and draws from a list of principles to answer whether the hypothesised theory is supported by the data. We incorporate scoring rules and cross-validation to supplement existing model assessment metrics for Bayesian SEM. The methodology is illustrated in continuous and categorical data examples via simulation experiments as well as real-world applications on the `Big-5' personality scale and the Fagerstrom test for nicotine dependence.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro