Forecasting and Granger Modelling with Non-linear Dynamical Dependencies

06/27/2017
by   Magda Gregorova, et al.
0

Traditional linear methods for forecasting multivariate time series are not able to satisfactorily model the non-linear dependencies that may exist in non-Gaussian series. We build on the theory of learning vector-valued functions in the reproducing kernel Hilbert space and develop a method for learning prediction functions that accommodate such non-linearities. The method not only learns the predictive function but also the matrix-valued kernel underlying the function search space directly from the data. Our approach is based on learning multiple matrix-valued kernels, each of those composed of a set of input kernels and a set of output kernels learned in the cone of positive semi-definite matrices. In addition to superior predictive performance in the presence of strong non-linearities, our method also recovers the hidden dynamic relationships between the series and thus is a new alternative to existing graphical Granger techniques.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro