Focusing and Diffusion: Bidirectional Attentive Graph Convolutional Networks for Skeleton-based Action Recognition

12/24/2019
by   Jialin Gao, et al.
0

A collection of approaches based on graph convolutional networks have proven success in skeleton-based action recognition by exploring neighborhood information and dense dependencies between intra-frame joints. However, these approaches usually ignore the spatial-temporal global context as well as the local relation between inter-frame and intra-frame. In this paper, we propose a focusing and diffusion mechanism to enhance graph convolutional networks by paying attention to the kinematic dependence of articulated human pose in a frame and their implicit dependencies over frames. In the focusing process, we introduce an attention module to learn a latent node over the intra-frame joints to convey spatial contextual information. In this way, the sparse connections between joints in a frame can be well captured, while the global context over the entire sequence is further captured by these hidden nodes with a bidirectional LSTM. In the diffusing process, the learned spatial-temporal contextual information is passed back to the spatial joints, leading to a bidirectional attentive graph convolutional network (BAGCN) that can facilitate skeleton-based action recognition. Extensive experiments on the challenging NTU RGB+D and Skeleton-Kinetics benchmarks demonstrate the efficacy of our approach.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro