Flexible Bayesian Nowcasting with application to COVID-19 fatalities in Sweden

02/09/2022
by   Fanny Bergström, et al.
0

The real-time analysis of infectious disease surveillance data, e.g. time-series of reported cases or fatalities, can help to provide situational awareness about the current state of a pandemic. This task is challenged by reporting delays that give rise to occurred-but-not-yet-reported events. If these events are not taken into consideration, this can lead to an under-estimation of the counts-to-be-reported and, hence, introduces misconceptions by the interpreter, the media or the general public – as has been seen for example for reported fatalities during the COVID-19 pandemic. Nowcasting methods provide close to real-time estimates of the complete number of events using the incomplete time-series of currently reported events by using information about the reporting delays from the past. In this report, we consider nowcasting the number of COVID-19 related fatalities in Sweden. We propose a flexible Bayesian approach that considers temporal changes in the reporting delay distribution and, as an extension to existing nowcasting methods, incorporates a regression component for the (lagged) time-series of the number of ICU admissions. This results in a model considering both the past behavior of the time-series of fatalities as well as additional data streams that are in a time-lagged association with the number of fatalities.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro