Fixed-Time Convergence for a Class of Nonconvex-Nonconcave Min-Max Problems

07/26/2022
by   Kunal Garg, et al.
0

This study develops a fixed-time convergent saddle point dynamical system for solving min-max problems under a relaxation of standard convexity-concavity assumption. In particular, it is shown that by leveraging the dynamical systems viewpoint of an optimization algorithm, accelerated convergence to a saddle point can be obtained. Instead of requiring the objective function to be strongly-convex–strongly-concave (as necessitated for accelerated convergence of several saddle-point algorithms), uniform fixed-time convergence is guaranteed for functions satisfying only the two-sided Polyak-Łojasiewicz (PL) inequality. A large number of practical problems, including the robust least squares estimation, are known to satisfy the two-sided PL inequality. The proposed method achieves arbitrarily fast convergence compared to any other state-of-the-art method with linear or even super-linear convergence, as also corroborated in numerical case studies.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro