First-order optimization on stratified sets

03/28/2023
by   Guillaume Olikier, et al.
0

We consider the problem of minimizing a differentiable function with locally Lipschitz continuous gradient on a stratified set and present a first-order algorithm designed to find a stationary point of that problem. Our assumptions on the stratified set are satisfied notably by the determinantal variety (i.e., matrices of bounded rank), its intersection with the cone of positive-semidefinite matrices, and the set of nonnegative sparse vectors. The iteration map of the proposed algorithm applies a step of projected-projected gradient descent with backtracking line search, as proposed by Schneider and Uschmajew (2015), to its input but also to a projection of the input onto each of the lower strata to which it is considered close, and outputs a point among those thereby produced that maximally reduces the cost function. Under our assumptions on the stratified set, we prove that this algorithm produces a sequence whose accumulation points are stationary, and therefore does not follow the so-called apocalypses described by Levin, Kileel, and Boumal (2022). We illustrate the apocalypse-free property of our method through a numerical experiment on the determinantal variety.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro