Finite element solution of a radiation/propagation problem for a Helmholtz equation with a compactly supported nonlinearity

07/18/2023
by   Lutz Angermann, et al.
0

A finite element method for approximating the solution of a mathematical model for the response of a penetrable, bounded object (obstacle) to the excitation by an external electromagnetic field is presented and investigated. The model consists of a nonlinear Helmholtz equation that is reduced to a spherical domain. The (exemplary) finite element method is formed by Courant-type elements with curved facets at the boundary of the spherical computational domain. This method is examined for its well-posedness, in particular the validity of a discrete inf-sup condition of the modified sesquilinear form uniformly with respect to both the truncation and the mesh parameters is shown. Under suitable assumptions to the nonlinearities, a quasi-optimal error estimate is obtained. Finally, the satisfiability of the approximation property of the finite element space required for the solvability of a class of adjoint linear problems is discussed.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro