Fingerprint Spoof Detection: Temporal Analysis of Image Sequence

12/17/2019
by   Tarang Chugh, et al.
12

We utilize the dynamics involved in the imaging of a fingerprint on a touch-based fingerprint reader, such as perspiration, changes in skin color (blanching), and skin distortion, to differentiate real fingers from spoof (fake) fingers. Specifically, we utilize a deep learning-based architecture (CNN-LSTM) trained end-to-end using sequences of minutiae-centered local patches extracted from ten color frames captured on a COTS fingerprint reader. A time-distributed CNN (MobileNet-v1) extracts spatial features from each local patch, while a bi-directional LSTM layer learns the temporal relationship between the patches in the sequence. Experimental results on a database of 26,650 live frames from 685 subjects (1,333 unique fingers), and 32,910 spoof frames of 7 spoof materials (with 14 variants) shows the superiority of the proposed approach in both known-material and cross-material (generalization) scenarios. For instance, the proposed approach improves the state-of-the-art cross-material performance from TDR of 81.65

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro