Fine-tuning of explainable CNNs for skin lesion classification based on dermatologists' feedback towards increasing trust

04/03/2023
by   Md Abdul Kadir, et al.
0

In this paper, we propose a CNN fine-tuning method which enables users to give simultaneous feedback on two outputs: the classification itself and the visual explanation for the classification. We present the effect of this feedback strategy in a skin lesion classification task and measure how CNNs react to the two types of user feedback. To implement this approach, we propose a novel CNN architecture that integrates the Grad-CAM technique for explaining the model's decision in the training loop. Using simulated user feedback, we found that fine-tuning our model on both classification and explanation improves visual explanation while preserving classification accuracy, thus potentially increasing the trust of users in using CNN-based skin lesion classifiers.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro