Fine Perceptive GANs for Brain MR Image Super-Resolution in Wavelet Domain

11/09/2020
by   Senrong You, et al.
0

Magnetic resonance imaging plays an important role in computer-aided diagnosis and brain exploration. However, limited by hardware, scanning time and cost, it's challenging to acquire high-resolution (HR) magnetic resonance (MR) image clinically. In this paper, fine perceptive generative adversarial networks (FP-GANs) is proposed to produce HR MR images from low-resolution counterparts. It can cope with the detail insensitive problem of the existing super-resolution model in a divide-and-conquer manner. Specifically, FP-GANs firstly divides an MR image into low-frequency global approximation and high-frequency anatomical texture in wavelet domain. Then each sub-band generative adversarial network (sub-band GAN) conquers the super-resolution procedure of each single sub-band image. Meanwhile, sub-band attention is deployed to tune focus between global and texture information. It can focus on sub-band images instead of feature maps to further enhance the anatomical reconstruction ability of FP-GANs. In addition, inverse discrete wavelet transformation (IDWT) is integrated into model for taking the reconstruction of whole image into account. Experiments on MultiRes_7T dataset demonstrate that FP-GANs outperforms the competing methods quantitatively and qualitatively.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro