Finding steady-state solutions for ODE systems of zero, first and homogeneous second-order chemical reactions is NP-hard

02/27/2018
by   Marcelo S. Reis, et al.
0

In the context of modeling of cell signaling pathways, a relevant step is finding steady-state solutions for ODE systems that describe the kinetics of a set of chemical reactions, especially sets composed of zero, first, and second-order reactions. To compute a steady-state solution, one must set the left-hand side of each ODE as zero, hence obtaining a system of non-negative, quadratic polynomial equations. If all second-order reactions are homogeneous in respect to their reactants, then the obtained quadratic polynomial equation system will also have univariate monomials. Although it is a well-known fact that finding a root of a quadratic polynomial equation system is a NP-hard problem, it is not so easy to find a readily available proof of NP-hardness for special cases like the aforementioned one. Therefore, we provide here a self-contained proof that finding a root of non-negative, with univariate monomials quadratic polynomial equation system (NUMQ-PES) is NP-hard. This result implies that finding steady-state solutions for ODE systems of zero, first and homogeneous second-order chemical reactions is a NP-hard problem; hence, it is not a feasible approach to approximate non-homogeneous second-order reactions into homogeneous ones.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro