Finding Local Minima via Stochastic Nested Variance Reduction

06/22/2018
by   Dongruo Zhou, et al.
2

We propose two algorithms that can find local minima faster than the state-of-the-art algorithms in both finite-sum and general stochastic nonconvex optimization. At the core of the proposed algorithms is One-epoch-SNVRG^+ using stochastic nested variance reduction (Zhou et al., 2018a), which outperforms the state-of-the-art variance reduction algorithms such as SCSG (Lei et al., 2017). In particular, for finite-sum optimization problems, the proposed SNVRG^++Neon2^finite algorithm achieves Õ(n^1/2ϵ^-2+nϵ_H^-3+n^3/4ϵ_H^-7/2) gradient complexity to converge to an (ϵ, ϵ_H)-second-order stationary point, which outperforms SVRG+Neon2^finite (Allen-Zhu and Li, 2017) , the best existing algorithm, in a wide regime. For general stochastic optimization problems, the proposed SNVRG^++Neon2^online achieves Õ(ϵ^-3+ϵ_H^-5+ϵ^-2ϵ_H^-3) gradient complexity, which is better than both SVRG+Neon2^online (Allen-Zhu and Li, 2017) and Natasha2 (Allen-Zhu, 2017) in certain regimes. Furthermore, we explore the acceleration brought by third-order smoothness of the objective function.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro