Fighting Fake News: Image Splice Detection via Learned Self-Consistency

05/10/2018
by   Minyoung Huh, et al.
0

Advances in photo editing and manipulation tools have made it significantly easier to create fake imagery. Learning to detect such manipulations, however, remains a challenging problem due to the lack of sufficient training data. In this paper, we propose a model that learns to detect visual manipulations from unlabeled data through self-supervision. Given a large collection of real photographs with automatically recorded EXIF metadata, we train a model to determine whether an image is self-consistent --- that is, whether its content could have been produced by a single imaging pipeline. We apply this self-supervised learning method to the task of detecting and localizing image splices. Although the proposed model obtains state-of-the-art performance on several benchmarks, we see it as merely a step in the long quest for a truly general-purpose visual forensics tool.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro