Few-shot Learning with Contextual Cueing for Object Recognition in Complex Scenes

12/13/2019
by   Mathieu Pagé Fortin, et al.
21

Few-shot Learning aims to recognize new concepts from a small number of training examples. Recent work mainly tackle this problem by improving visual features, feature transfer and meta-training algorithms. In this work, we propose to explore a complementary direction by using scene context semantics to learn and recognize new concepts more easily. Whereas a few visual examples cannot cover all intra-class variations, contextual cueing offers a complementary signal to classify instances with unseen features or ambiguous objects. More specifically, we propose a Class-conditioned Context Attention Module (CCAM) that learns to weight the most important context elements while learning a particular concept. We additionally propose a flexible gating mechanism to ground visual class representations in context semantics. We conduct extensive experiments on Visual Genome dataset, and we show that compared to a visual-only baseline, our model improves top-1 accuracy by 20.47 and 9.13 12.45

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro