Feature Partitioning for Efficient Multi-Task Architectures

08/12/2019
by   Alejandro Newell, et al.
4

Multi-task learning holds the promise of less data, parameters, and time than training of separate models. We propose a method to automatically search over multi-task architectures while taking resource constraints into consideration. We propose a search space that compactly represents different parameter sharing strategies. This provides more effective coverage and sampling of the space of multi-task architectures. We also present a method for quick evaluation of different architectures by using feature distillation. Together these contributions allow us to quickly optimize for efficient multi-task models. We benchmark on Visual Decathlon, demonstrating that we can automatically search for and identify multi-task architectures that effectively make trade-offs between task resource requirements while achieving a high level of final performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro