FDFlowNet: Fast Optical Flow Estimation using a Deep Lightweight Network

06/22/2020
by   Lingtong Kong, et al.
0

Significant progress has been made for estimating optical flow using deep neural networks. Advanced deep models achieve accurate flow estimation often with a considerable computation complexity and time-consuming training processes. In this work, we present a lightweight yet effective model for real-time optical flow estimation, termed FDFlowNet (fast deep flownet). We achieve better or similar accuracy on the challenging KITTI and Sintel benchmarks while being about 2 times faster than PWC-Net. This is achieved by a carefully-designed structure and newly proposed components. We first introduce an U-shape network for constructing multi-scale feature which benefits upper levels with global receptive field compared with pyramid network. In each scale, a partial fully connected structure with dilated convolution is proposed for flow estimation that obtains a good balance among speed, accuracy and number of parameters compared with sequential connected and dense connected structures. Experiments demonstrate that our model achieves state-of-the-art performance while being fast and lightweight.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro