Fast Top-k Area Topics Extraction with Knowledge Base

10/13/2017
by   Fang Zhang, et al.
0

What are the most popular research topics in Artificial Intelligence (AI)? We formulate the problem as extracting top-k topics that can best represent a given area with the help of knowledge base. We theoretically prove that the problem is NP-hard and propose an optimization model, FastKATE, to address this problem by combining both explicit and latent representations for each topic. We leverage a large-scale knowledge base (Wikipedia) to generate topic embeddings using neural networks and use this kind of representations to help capture the representativeness of topics for given areas. We develop a fast heuristic algorithm to efficiently solve the problem with a provable error bound. We evaluate the proposed model on three real-world datasets. Experimental results demonstrate our model's effectiveness, robustness, real-timeness (return results in <1s), and its superiority over several alternative methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro