Fast rates for noisy interpolation require rethinking the effects of inductive bias

03/07/2022
by   Konstantin Donhauser, et al.
5

Good generalization performance on high-dimensional data crucially hinges on a simple structure of the ground truth and a corresponding strong inductive bias of the estimator. Even though this intuition is valid for regularized models, in this paper we caution against a strong inductive bias for interpolation in the presence of noise: Our results suggest that, while a stronger inductive bias encourages a simpler structure that is more aligned with the ground truth, it also increases the detrimental effect of noise. Specifically, for both linear regression and classification with a sparse ground truth, we prove that minimum ℓ_p-norm and maximum ℓ_p-margin interpolators achieve fast polynomial rates up to order 1/n for p > 1 compared to a logarithmic rate for p = 1. Finally, we provide experimental evidence that this trade-off may also play a crucial role in understanding non-linear interpolating models used in practice.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro