Fast Rank-1 NMF for Missing Data with KL Divergence

10/25/2021
by   Kazu Ghalamkari, et al.
0

We propose a fast non-gradient based method of rank-1 non-negative matrix factorization (NMF) for missing data, called A1GM, that minimizes the KL divergence from an input matrix to the reconstructed rank-1 matrix. Our method is based on our new finding of an analytical closed-formula of the best rank-1 non-negative multiple matrix factorization (NMMF), a variety of NMF. NMMF is known to exactly solve NMF for missing data if positions of missing values satisfy a certain condition, and A1GM transforms a given matrix so that the analytical solution to NMMF can be applied. We empirically show that A1GM is more efficient than a gradient method with competitive reconstruction errors.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro