Fast influencers in complex networks

03/15/2019
by   Fang Zhou, et al.
0

Influential nodes in complex networks are typically defined as those nodes that maximize the asymptotic reach of a spreading process of interest. However, for practical applications such as viral marketing and online information spreading, one is often interested in maximizing the reach of the process in a short amount of time. The traditional definition of influencers in network-related studies from diverse research fields narrows down the focus to the late-time state of the spreading processes, leaving the following question unsolved: which nodes are able to initiate large-scale spreading processes, in a limited amount of time? Here, we find that there is a fundamental difference between the nodes -- which we call "fast influencers" -- that initiate the largest-reach processes in a short amount of time, and the traditional, "late-time" influencers. Stimulated by this observation, we provide an extensive benchmarking of centrality metrics with respect to their ability to identify both the fast and late-time influencers. We find that local network properties can be used to uncover the fast influencers. In particular, a parsimonious, local centrality metric (which we call social capital) achieves optimal or nearly-optimal performance in the fast influencer identification for all the analyzed empirical networks. Local metrics tend to be also competitive in the traditional, late-time influencer identification task.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro