Fast(er) Exact Decoding and Global Training for Transition-Based Dependency Parsing via a Minimal Feature Set

08/30/2017
by   Tianze Shi, et al.
0

We first present a minimal feature set for transition-based dependency parsing, continuing a recent trend started by Kiperwasser and Goldberg (2016a) and Cross and Huang (2016a) of using bi-directional LSTM features. We plug our minimal feature set into the dynamic-programming framework of Huang and Sagae (2010) and Kuhlmann et al. (2011) to produce the first implementation of worst-case O(n^3) exact decoders for arc-hybrid and arc-eager transition systems. With our minimal features, we also present O(n^3) global training methods. Finally, using ensembles including our new parsers, we achieve the best unlabeled attachment score reported (to our knowledge) on the Chinese Treebank and the "second-best-in-class" result on the English Penn Treebank.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro