Fast and accurate numerical simulations for the study of coronary artery bypass grafts by artificial neural network

01/05/2022
by   Pierfrancesco Siena, et al.
0

In this work a machine learning-based Reduced Order Model (ROM) is developed to investigate in a rapid and reliable way the hemodynamic patterns in a patient-specific configuration of Coronary Artery Bypass Graft (CABG). The computational domain is composed by the left branches of coronary arteries when a stenosis of the Left Main Coronary Artery (LMCA) occurs. A reduced basis space is extracted from a collection of Finite Volume (FV) solutions of the incompressible Navier-Stokes equations by using the Proper Orthogonal Decomposition (POD) algorithm. Artificial Neural Networks (ANNs) are employed to compute the modal coefficients. Stenosis is introduced by morphing the volume meshes with a Free Form Deformation (FFD) by means of a Non-Uniform Rational Basis Spline (NURBS) volumetric parameterization.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro