Fast acoustic scattering using convolutional neural networks

10/30/2019
by   Ziqi Fan, et al.
0

Diffracted scattering and occlusion are important acoustic effects in interactive auralization and noise control applications, typically requiring expensive numerical simulation. We propose training a convolutional neural network to map from a convex scatterer's cross-section to a 2D slice of the resulting spatial loudness distribution. We show that employing a full-resolution residual network for the resulting image-to-image regression problem yields spatially detailed loudness fields with a root-mean-squared error of less than 1 dB, at over 100* speedup compared to full wave simulation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro