Fashion Image Retrieval with Multi-Granular Alignment

02/16/2023
by   Jinkuan Zhu, et al.
0

Fashion image retrieval task aims to search relevant clothing items of a query image from the gallery. The previous recipes focus on designing different distance-based loss functions, pulling relevant pairs to be close and pushing irrelevant images apart. However, these methods ignore fine-grained features (e.g. neckband, cuff) of clothing images. In this paper, we propose a novel fashion image retrieval method leveraging both global and fine-grained features, dubbed Multi-Granular Alignment (MGA). Specifically, we design a Fine-Granular Aggregator(FGA) to capture and aggregate detailed patterns. Then we propose Attention-based Token Alignment (ATA) to align image features at the multi-granular level in a coarse-to-fine manner. To prove the effectiveness of our proposed method, we conduct experiments on two sub-tasks (In-Shop Consumer2Shop) of the public fashion datasets DeepFashion. The experimental results show that our MGA outperforms the state-of-the-art methods by 3.1 0.6

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro