False-Name-Proof Facility Location on Discrete Structures

07/21/2019
by   Taiki Todo, et al.
0

We consider the problem of locating a single facility on a vertex in a given graph based on agents' preferences, where the domain of the preferences is either single-peaked or single-dipped. Our main interest is the existence of deterministic social choice functions (SCFs) that are Pareto efficient and false-name-proof, i.e., resistant to fake votes. We show that regardless of whether preferences are single-peaked or single-dipped, such an SCF exists (i) for any tree graph, and (ii) for a cycle graph if and only if its length is less than six. We also show that when the preferences are single-peaked, such an SCF exists for any ladder (i.e., 2-by-m grid) graph, and does not exist for any larger hypergrid.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro