Factor Graphs for Quantum Information Processing

03/23/2022
by   Michael X. Cao, et al.
0

[...] In this thesis, we are interested in generalizing factor graphs and the relevant methods toward describing quantum systems. Two generalizations of classical graphical models are investigated, namely double-edge factor graphs (DeFGs) and quantum factor graphs (QFGs). Conventionally, a factor in a factor graph represents a nonnegative real-valued local functions. Two different approaches to generalize factors in classical factor graphs yield DeFGs and QFGs, respectively. We proposed/re-proposed and analyzed generalized versions of belief-propagation algorithms for DeFGs/QFGs. As a particular application of the DeFGs, we investigate the information rate and their upper/lower bounds of classical communications over quantum channels with memory. In this study, we also propose a data-driven method for optimizing the upper/lower bounds on information rate.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro