FaceRNET: a Facial Expression Intensity Estimation Network

03/01/2023
by   Dimitrios Kollias, et al.
0

This paper presents our approach for Facial Expression Intensity Estimation from videos. It includes two components: i) a representation extractor network that extracts various emotion descriptors (valence-arousal, action units and basic expressions) from each videoframe; ii) a RNN that captures temporal information in the data, followed by a mask layer which enables handling varying input video lengths through dynamic routing. This approach has been tested on the Hume-Reaction dataset yielding excellent results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro