Exploration on Grounded Word Embedding: Matching Words and Images with Image-Enhanced Skip-Gram Model

09/08/2018
by   Ruixuan Luo, et al.
0

Word embedding is designed to represent the semantic meaning of a word with low dimensional vectors. The state-of-the-art methods of learning word embeddings (word2vec and GloVe) only use the word co-occurrence information. The learned embeddings are real number vectors, which are obscure to human. In this paper, we propose an Image-Enhanced Skip-Gram Model to learn grounded word embeddings by representing the word vectors in the same hyper-plane with image vectors. Experiments show that the image vectors and word embeddings learned by our model are highly correlated, which indicates that our model is able to provide a vivid image-based explanation to the word embeddings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro