Exploiting Unsupervised Inputs for Accurate Few-Shot Classification

01/27/2020
by   Yuqing Hu, et al.
0

In few-shot classification, the aim is to learn models able to discriminate classes with only a small number of labelled examples. Most of the literature considers the problem of labelling a single unknown input at a time. Instead, it can be beneficial to consider a setting where a batch of unlabelled inputs are treated conjointly and non-independently. In this paper, we propose a method able to exploit three levels of information: a) feature extractors pretrained on generic datasets, b) few labelled examples of classes to discriminate and c) other available unlabelled inputs. If for a), we use state-of-the-art approaches, we introduce the use of simplified graph convolutions to perform b) and c) together. Our proposed model reaches state-of-the-art accuracy with a 6-11% increase compared to available alternatives on standard few-shot vision classification datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro