Explicit and efficient error estimation for convex minimization problems

04/22/2022
by   Sören Bartels, et al.
0

We combine a systematic approach for deriving general a posteriori error estimates for convex minimization problems based on convex duality relations with a recently derived generalized Marini formula. The a posteriori error estimates are essentially constant-free and apply to a large class of variational problems including the p-Dirichlet problem, as well as degenerate minimization, obstacle and image de-noising problems. In addition, these a posteriori error estimates are based on a comparison to a given non-conforming finite element solution. For the p-Dirichlet problem, these a posteriori error bounds are equivalent to residual type a posteriori error bounds and, hence, reliable and efficient.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro