Evolved preambles for MAX-SAT heuristics

02/18/2011
by   Luis O. Rigo Jr, et al.
0

MAX-SAT heuristics normally operate from random initial truth assignments to the variables. We consider the use of what we call preambles, which are sequences of variables with corresponding single-variable assignment actions intended to be used to determine a more suitable initial truth assignment for a given problem instance and a given heuristic. For a number of well established MAX-SAT heuristics and benchmark instances, we demonstrate that preambles can be evolved by a genetic algorithm such that the heuristics are outperformed in a significant fraction of the cases.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro