Evolutionary reinforcement learning of dynamical large deviations

09/02/2019
by   Stephen Whitelam, et al.
0

We show how to calculate dynamical large deviations using evolutionary reinforcement learning. An agent, a stochastic model, propagates a continuous-time Monte Carlo trajectory, and receives a reward conditioned upon the values of certain path-extensive quantities. Evolution produces progressively fitter agents, allowing the calculation of a piece of a large-deviation rate function for a particular model and path-extensive quantity. For models with small state spaces the evolutionary process acts directly on rates, and for models with large state spaces the process acts on the weights of a neural network that parameterizes the model's rates. The present approach shows how path-extensive physics problems can be considered within a framework widely used in machine learning.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro