Evaluating Transformer-Based Multilingual Text Classification

04/29/2020
by   Sophie Groenwold, et al.
0

As NLP tools become ubiquitous in today's technological landscape, they are increasingly applied to languages with a variety of typological structures. However, NLP research does not focus primarily on typological differences in its analysis of state-of-the-art language models. As a result, NLP tools perform unequally across languages with different syntactic and morphological structures. Through a detailed discussion of word order typology, morphological typology, and comparative linguistics, we identify which variables most affect language modeling efficacy; in addition, we calculate word order and morphological similarity indices to aid our empirical study. We then use this background to support our analysis of an experiment we conduct using multi-class text classification on eight languages and eight models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro