Evaluating the Performance of Multi-Scan Integration for UAV LiDAR-based Tracking

04/03/2023
by   Iacopo Catalano, et al.
0

Drones have become essential tools in a wide range of industries, including agriculture, surveying, and transportation. However, tracking unmanned aerial vehicles (UAVs) in challenging environments, such cluttered or GNSS-denied environments, remains a critical issue. Additionally, UAVs are being deployed as part of multi-robot systems, where tracking their position can be essential for relative state estimation. In this paper, we evaluate the performance of a multi-scan integration method for tracking UAVs in GNSS-denied environments using a solid-state LiDAR and a Kalman Filter (KF). We evaluate the algorithm's ability to track a UAV in a large open area at various distances and speeds. Our quantitative analysis shows that while "tracking by detection" using a constant velocity model is the only method that consistently tracks the target, integrating multiple scan frequencies using a KF achieves lower position errors and represents a viable option for tracking UAVs in similar scenarios.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro