Estimation and Inference of Time-Varying Auto-Covariance under Complex Trend: A Difference-based Approach

03/10/2020
by   Yan Cui, et al.
0

We propose a difference-based nonparametric methodology for the estimation and inference of the time-varying auto-covariance functions of a locally stationary time series when it is contaminated by a complex trend with both abrupt and smooth changes. Simultaneous confidence bands (SCB) with asymptotically correct coverage probabilities are constructed for the auto-covariance functions under complex trend. A simulation-assisted bootstrapping method is proposed for the practical construction of the SCB. Detailed simulation and a real data example round out our presentation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro