Estimation and Inference by Stochastic Optimization: Three Examples

02/20/2021
by   Jean-Jacques Forneron, et al.
0

This paper illustrates two algorithms designed in Forneron Ng (2020): the resampled Newton-Raphson (rNR) and resampled quasi-Newton (rqN) algorithms which speed-up estimation and bootstrap inference for structural models. An empirical application to BLP shows that computation time decreases from nearly 5 hours with the standard bootstrap to just over 1 hour with rNR, and only 15 minutes using rqN. A first Monte-Carlo exercise illustrates the accuracy of the method for estimation and inference in a probit IV regression. A second exercise additionally illustrates statistical efficiency gains relative to standard estimation for simulation-based estimation using a dynamic panel regression example.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro