Estimating the Euclidean Quantum Propagator with Deep Generative Modelling of Feynman paths

02/06/2022
by   Yanming Che, et al.
0

Feynman path integrals provide an elegant, classically-inspired representation for the quantum propagator and the quantum dynamics, through summing over a huge manifold of all possible paths. From computational and simulational perspectives, the ergodic tracking of the whole path manifold is a hard problem. Machine learning can help, in an efficient manner, to identify the relevant subspace and the intrinsic structure residing at a small fraction of the vast path manifold. In this work, we propose the concept of Feynman path generator, which efficiently generates Feynman paths with fixed endpoints from a (low-dimensional) latent space, by targeting a desired density of paths in the Euclidean space-time. With such path generators, the Euclidean propagator as well as the ground state wave function can be estimated efficiently for a generic potential energy. Our work leads to a fresh approach for calculating the quantum propagator, paves the way toward generative modelling of Feynman paths, and may also provide a future new perspective to understand the quantum-classical correspondence through deep learning.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro