Equivariant Maps for Hierarchical Structures

06/05/2020
by   Renhao Wang, et al.
0

In many real-world settings, we are interested in learning invariant and equivariant functions over nested or multiresolution structures, such as a set of sequences, a graph of graphs, or a multiresolution image. While equivariant linear maps and by extension multilayer perceptrons (MLPs) for many of the individual basic structures are known, a formalism for dealing with a hierarchy of symmetry transformations is lacking. Observing that the transformation group for a nested structure corresponds to the “wreath product” of the symmetry groups of the building blocks, we show how to obtain the equivariant map for hierarchical data-structures using an intuitive combination of the equivariant maps for the individual blocks. To demonstrate the effectiveness of this type of model, we use a hierarchy of translation and permutation symmetries for learning on point cloud data, and report state-of-the-art on semantic3d and s3dis, two of the largest real-world benchmarks for 3D semantic segmentation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro