Entity-Relationship Search over the Web

10/08/2018
by   Pedro Saleiro, et al.
0

Entity-Relationship (E-R) Search is a complex case of Entity Search where the goal is to search for multiple unknown entities and relationships connecting them. We assume that a E-R query can be decomposed as a sequence of sub-queries each containing keywords related to a specific entity or relationship. We adopt a probabilistic formulation of the E-R search problem. When creating specific representations for entities (e.g. context terms) and for pairs of entities (i.e. relationships) it is possible to create a graph of probabilistic dependencies between sub-queries and entity plus relationship representations. To the best of our knowledge this represents the first probabilistic model of E-R search. We propose and develop a novel supervised Early Fusion-based model for E-R search, the Entity-Relationship Dependence Model (ERDM). It uses Markov Random Field to model term dependencies of E-R sub-queries and entity/relationship documents. We performed experiments with more than 800M entities and relationships extractions from ClueWeb-09-B with FACC1 entity linking. We obtained promising results using 3 different query collections comprising 469 E-R queries, with results showing that it is possible to perform E-R search without using fix and pre-defined entity and relationship types, enabling a wide range of queries to be addressed.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro