Entanglement Properties of Quantum Superpositions of Smooth, Differentiable Functions

09/18/2020
by   Adam Holmes, et al.
0

We present an entanglement analysis of quantum superpositions corresponding to smooth, differentiable, real-valued (SDR) univariate functions. SDR functions are shown to be scalably approximated by low-rank matrix product states, for large system discretizations. We show that the maximum von-Neumann bipartite entropy of these functions grows logarithmically with the system size. This implies that efficient low-rank approximations to these functions exist in a matrix product state (MPS) for large systems. As a corollary, we show an upper bound on trace-distance approximation accuracy for a rank-2 MPS as Ω(log N/N), implying that these low-rank approximations can scale accurately for large quantum systems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro