ENSURE: Ensemble Stein's Unbiased Risk Estimator for Unsupervised Learning

10/20/2020
by   Hemant Kumar Aggarwal, et al.
0

Deep learning accelerates the MR image reconstruction process after offline training of a deep neural network from a large volume of clean and fully sampled data. Unfortunately, fully sampled images may not be available or are difficult to acquire in several application areas such as high-resolution imaging. Previous studies have utilized Stein's Unbiased Risk Estimator (SURE) as a mean square error (MSE) estimate for the image denoising problem. Unrolled reconstruction algorithms, where the denoiser at each iteration is trained using SURE, has also been introduced. Unfortunately, the end-to-end training of a network using SURE remains challenging since the projected SURE loss is a poor approximation to the MSE, especially in the heavily undersampled setting. We propose an ENsemble SURE (ENSURE) approach to train a deep network only from undersampled measurements. In particular, we show that training a network using an ensemble of images, each acquired with a different sampling pattern, can closely approximate the MSE. Our preliminary experimental results show that the proposed ENSURE approach gives comparable reconstruction quality to supervised learning and a recent unsupervised learning method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro