End-to-end deep metamodeling to calibrate and optimize energy loads

06/19/2020
by   Max Cohen, et al.
0

In this paper, we propose a new end-to-end methodology to optimize the energy performance and the comfort, air quality and hygiene of large buildings. A metamodel based on a Transformer network is introduced and trained using a dataset sampled with a simulation program. Then, a few physical parameters and the building management system settings of this metamodel are calibrated using the CMA-ES optimization algorithm and real data obtained from sensors. Finally, the optimal settings to minimize the energy loads while maintaining a target thermal comfort and air quality are obtained using a multi-objective optimization procedure. The numerical experiments illustrate how this metamodel ensures a significant gain in energy efficiency while being computationally much more appealing than models requiring a huge number of physical parameters to be estimated.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro