Eliminating Unstable Tests in Floating-Point Programs

08/13/2018
by   Laura Titolo, et al.
0

Round-off errors arising from the difference between real numbers and their floating-point representation cause the control flow of conditional floating-point statements to deviate from the ideal flow of the real-number computation. This problem, which is called test instability, may result in a significant difference between the computation of a floating-point program and the expected output in real arithmetic. In this paper, a formally proven program transformation is proposed to detect and correct the effects of unstable tests. The output of this transformation is a floating-point program that is guaranteed to return either the result of the original floating-point program when it can be assured that both its real and its floating-point flows agree or a warning when these flows may diverge. The proposed approach is illustrated with the transformation of the core computation of a polygon containment algorithm developed at NASA that is used in a geofencing system for unmanned aircraft systems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro