ElecSim: Monte-Carlo Open-Source Agent-Based Model to Inform Policy for Long-Term Electricity Planning

10/22/2019
by   Alexander J. M. Kell, et al.
0

Due to the threat of climate change, a transition from a fossil-fuel based system to one based on zero-carbon is required. However, this is not as simple as instantaneously closing down all fossil fuel energy generation and replacing them with renewable sources – careful decisions need to be taken to ensure rapid but stable progress. To aid decision makers, we present a new tool, ElecSim, which is an open-sourced agent-based modelling framework used to examine the effect of policy on long-term investment decisions in electricity generation. ElecSim allows non-experts to rapidly prototype new ideas. Different techniques to model long-term electricity decisions are reviewed and used to motivate why agent-based models will become an important strategic tool for policy. We motivate why an open-source toolkit is required for long-term electricity planning. Actual electricity prices are compared with our model and we demonstrate that the use of a Monte-Carlo simulation in the system improves performance by 52.5%. Further, using ElecSim we demonstrate the effect of a carbon tax to encourage a low-carbon electricity supply. We show how a 40 ($50) per tonne of CO2 emitted would lead to 70

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro